Coupled Maxwell-pseudospin equations for investigation of self-induced transparency effects in a degenerate three-level quantum system in two dimensions: Finite-difference time-domain study

نویسندگان

  • G. Slavcheva
  • J. M. Arnold
  • I. Wallace
  • R. W. Ziolkowski
چکیده

We extend to more than one spatial dimension the semiclassical full-wave vector Maxwell-Bloch equations for the purpose of achieving an adequate and rigorous description of ultrashort pulse propagation in optical waveguides containing resonant nonlinearities. Our considerations are based on the generalized pseudospin formalism introduced by Hioe and Eberly @Phys. Rev. Lett. 47, 838 ~1981!# for treatment of the resonant coherent interactions of ultrashort light pulses with discrete-multilevel systems. A self-consistent set of coupled curl Maxwell-pseudospin equations in two spatial dimensions and time for the special case of a degenerate three-level system of quantum absorbers is originally derived. Maxwell’s curl equations are considered to be coupled via macroscopic medium polarization to the three-level atom model for the resonant medium. Two distinct sets of pseudospin equations are obtained corresponding to the TEand TM-polarized optical waves. For the case of TM polarization, the electromagnetic wave is polarized in a general direction in the plane of incidence inducing two dipole transitions in a degenerate three-level system by each E-field component along the propagation axis and in transverse direction. We introduce a dipole-coupling interaction Hamiltonian allowing Rabi flopping of the population difference along and perpendicular to the propagation axis with frequencies depending on the corresponding field components. The relationship between the induced polarization and the state vector components that describe the evolution of the discrete-level system is derived in order to couple the quantum system equations to the Maxwell’s curl equations. The pseudospin equations are phenomenologically extended to include relaxation effects by introducing nonuniform decay times corresponding to the various dipole transitions occurring in a three-level system. The system has been discretized using finite differences on a Yee grid and solved numerically by an iterative predictor-corrector finite-difference time-domain method. Self-induced transparency soliton propagation through a degenerate three-level quantum system of absorbers in two spatial dimensions and time is demonstrated in planar parallel-mirror waveguide geometries.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrashort Pulse Lossless Propagation Through a Degenerate Three-Level Medium in Nonlinear Optical Waveguides and Semiconductor Microcavities

The authors develop and apply a novel group-theoretical approach for studying the coherent dynamics of ultrashort pulse propagation in nonlinear optical waveguides and passive semiconductor microresonators. The resonant nonlinearity is modeled by a degenerate three-level system of saturable absorbers in order to allow for a two-dimensional medium polarization. The resulting Maxwell-pseudospin e...

متن کامل

Dynamical model of coherent circularly polarized optical pulse interactions with two-level quantum systems

We propose and develop a method for theoretical description of circularly elliptically polarized optical pulse resonant coherent interactions with two-level atoms. The method is based on the time-evolution equations of a two-level quantum system in the presence of a time-dependent dipole perturbation for electric dipole transitions between states with total angular-momentum projection differenc...

متن کامل

Slavcheva, G. and Hess, O. (2006) Spin-dependent dynamics of ultrashort polarised optical pulse propagation in coherent

This version is made available in accordance with publisher policies. Please cite only the published version using the reference above. A new model for rigorous theoretical description of circularly (elliptically) polarised ultrashort optical pulse interactions with the resonant nonlinearities in semiconductor optical waveguides is proposed. The method is based on self-consistent solution in th...

متن کامل

Time-dependent analysis of carrier density and potential energy in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD)

Interaction and correlation effects in quantum dots play a fundamental role in defining both their equilibrium and transport properties. Numerical methods are commonly employed to study such systems. In this paper we investigate the numerical calculation of quantum transport of electrons in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD). The simulation is based on the imaginary time...

متن کامل

Time-dependent analysis of carrier density and potential energy in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD)

Interaction and correlation effects in quantum dots play a fundamental role in defining both their equilibrium and transport properties. Numerical methods are commonly employed to study such systems. In this paper we investigate the numerical calculation of quantum transport of electrons in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD). The simulation is based on the imaginary time...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002